Using Learned Predictions as Feedback to Improve Control and Communication with an Artificial Limb: Preliminary Findings

نویسندگان

  • Adam S. R. Parker
  • Ann L. Edwards
  • Patrick M. Pilarski
چکیده

Many people suffer from the loss of a limb. Learning to get by without an arm or hand can be very challenging, and existing prostheses do not yet fulfil the needs of individuals with amputations. One promising solution is to provide greater communication between a prosthesis and its user. Towards this end, we present a simple machine learning interface to supplement the control of a robotic limb with feedback to the user about what the limb will be experiencing in the near future. A real-time prediction learner was implemented to predict impact-related electrical load experienced by a robot limb; the learning system’s predictions were then communicated to the device’s user to aid in their interactions with a workspace. We tested this system with five able-bodied subjects. Each subject manipulated the robot arm while receiving different forms of vibrotactile feedback regarding the arm’s contact with its workspace. Our trials showed that communicable predictions could be learned quickly during human control of the robot arm. Using these predictions as a basis for feedback led to a statistically significant improvement in task performance when compared to purely reactive feedback from the device. Our study therefore contributes initial evidence that prediction learning and machine intelligence can benefit not just control, but also feedback from an artificial limb. We expect that a greater level of acceptance and ownership can be achieved if the prosthesis itself takes an active role in transmitting learned knowledge about its state and its situation of use.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Time Delay and Data Dropout Compensation in Networked Control Systems Using Extended Kalman Filter

In networked control systems, time delay and data dropout can degrade the performance of the control system and even destabilize the system. In the present paper, the Extended Kalman filter is employed to compensate the effects of time delay and data dropout in feedforward and feedback paths of networked control systems. In the proposed method, the extended Kalman filter is used as an observer ...

متن کامل

The effect of knee valgus control feedback exercise on pain, hip torque and performance variables in participants with patellofemoral pain

 Aims and background: Patellofemoral pain syndrome (PFPS) is a common knee disorder frequently occurred in young females. Abnormalities of lower limb movement patterns during weight-bearing activities can directly affect referred pain. The purpose of this study was to determine the effect of knee valgus control feedback exercise on pain, eccentric hip muscle torque, performance and knee angle i...

متن کامل

Prediction and optimization of load and torque in ring rolling process through development of artificial neural network and evolutionary algorithms

Developing artificial neural network (ANN), a model to make a correct prediction of required force and torque in ring rolling process is developed for the first time. Moreover, an optimal state of process for specific range of input parameters is obtained using Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) methods. Radii of main roll and mandrel, rotational speed of main roll, pr...

متن کامل

Rainfall-runoff modelling using artificial neural networks (ANNs): modelling and understanding

In recent years, artificial neural networks (ANNs) have become one of the most promising tools in order to model complex hydrological processes such as the rainfall-runoff process. In many studies, ANNs have demonstrated superior results compared to alternative methods. ANNs are able to map underlying relationship between input and output data without prior understanding of the process under in...

متن کامل

A New Robust Control Design Based on Feedback Compensator for Sssc

In this paper, the modified linearized Phillips-Heffron model is utilized to theoretically analyze asingle-machine infinite-bus (SMIB) installed with SSSC. Then, the results of this analysis are used forassessing the potential of an SSSC supplementary controller to improve the dynamic stability of apower system. This is carried out by measuring the electromechanical controllability through sing...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1408.1913  شماره 

صفحات  -

تاریخ انتشار 2014